A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals
نویسندگان
چکیده
منابع مشابه
A bilinear version of Orlicz-Pettis theorem
Given three Banach spaces X, Y and Z and a bounded bilinear map B : X×Y → Z, a sequence x = (xn)n ⊆ X is called B-absolutely summable if ∑∞ n=1 ‖B(xn, y)‖Z < ∞ for any y ∈ Y . Connections of this space with `weak(X) are presented. A sequence x = (xn)n ⊆ X is called B-unconditionally summable if ∑∞ n=1 |〈B(xn, y), z∗〉| < ∞ Preprint submitted to Elsevier 21 December 2007 for any y ∈ Y and z∗ ∈ Z∗...
متن کاملVolterra Integral Inclusions via Henstock-kurzweil-pettis Integral
In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.
متن کاملSubstitution Formulas for the Kurzweil and Henstock Vector Integrals
Results on integration by parts and integration by substitution for the variational integral of Henstock are well-known. When real-valued functions are considered, such results also hold for the Generalized Riemann Integral defined by Kurzweil since, in this case, the integrals of Kurzweil and Henstock coincide. However, in a Banach-space valued context, the Kurzweil integral properly contains ...
متن کاملHenstock–Kurzweil delta and nabla integrals
We will study the Henstock–Kurzweil delta and nabla integrals, which generalize the Henstock–Kurzweil integral. Many properties of these integrals will be obtained. These results will enable time scale researchers to study more general dynamic equations. The Hensock–Kurzweil delta (nabla) integral contains the Riemann delta (nabla) and Lebesque delta (nabla) integrals as special cases.
متن کاملIntegrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals
and Applied Analysis 3 We note that 1.1 in its general form involves some different types of differential and difference equations depending on the choice of the time scale T . For example: 1 for T R, we have σ t t, μ t 0, and xΔ t x′ t , and 1.1 becomes the Cauchy integrodifferential equation: x′ t f ( t, x t , ∫ t 0 k t, s, x s ds ) , t ∈ R,
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2002
ISSN: 0011-4642,1572-9141
DOI: 10.1023/a:1021719627933